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Almraet--Virmal mass terms for muitiphase flow are derived from a three-field representation of 
bubbles, bulk fiquid and the liquid associated with each bubble. 

I N T R O D U C T I O N  

In the two-phase motion of a bubble through a liquid, the total effective mass of the bubble 
consists of the mass of the vapor itself plus a virtual mass that arises from the inertial 
properties of the liquid in the immediate vicinity of the bubble. The virtual mass for a single 
bubble has been derived by Lamb (1952), Prandtl (1952) and Milne-Thomson (1968) for 
simple bubble shapes and slow motion through an unbounded, inviscid fluid. A discussion 
of virtual mass effects has also been presented by Thomas et al. 0983). In this classical case 
none of the surrounding fluid is trapped by the bubble, but instead is displaced during its 
passage. Our goal is to extend previous derivations to obtain a reasonable representation of 
the virtual mass effect for relatively high speed multiphase flow. 

Formulations of the virtual mass term introduce a coefficient, C , ,  which describes the 
volume of displaced fluid that contributes to the effective mass of the bubble. We introduce 
a similar coefficient, which plays an analogous role in the analysis. As shown by Drew et  al. 

(1979), the generalizations proposed by Hinze (1962), Soo (1967) and Wallis (1969) lack 
mathematical objectivity. In extending the formulations to a representation that is mathe- 
matically objective, Drew et  al. (1979) introduce an undetermined parameter, which is 
avoided by the approach described below. 

Our approach is to commence with a three field formulation representing the bulk liquid 
as field 1, the bubble vapor as field 2, and the surrounding liquid associated with the virtual 
mass inertia as field 3. The essence of our derivation lies in the assumption that fields 2 and 
3 are very strongly coupled together in the relatively complicated flow circumstance that we 
wish to describe. In this respect the material of field 3 is dynamically entrapped by the 
bubble. We assume the entrapped fluid occupies a volume fraction that is a fixed factor, f,  
of the volume fraction of the bubbles. With suitable descriptions for the relationships among 
the three fields, that is, the bulk liquid, the bubbles, and the entrapped liquid, our formu- 
lation reduces to the usual two-field equations but with a new representation for the virtual 
mass terms. Mathematical objectivity is ensured by the nature of the initial three-field 
formulation. Generalization to the case of variablefis possible in principle but requires a 
detailed examination of the microphysics, especially for circumstances involving nearly 
equal volume fractions for the bubbles and liquid. Our results are also applicable to droplets 
and particles. For simplicity we present the derivation for the case in which both the liquid 
and gas are incompressible. 

T H R E E - F I E L D  F L O W  

We denote the liquid phase by subscript 1 and the gas phase by subscript 2. The starting 
point for the derivation, however, splits the liquid into two separate fields, the bulk liquid 
retaining the subscript 1 and adding a prime, and the entrapped liquid being denoted by 
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subscript 3. The equations that express mass conservation are 

Op:~ 
p~tu~ = 0 [1] St + V "  ' '  , 

t3p2~2 
0---7 + V "  P2~2a2 ---- 0 ,  [2] 

and 

aPl~3 
0---~ + V" P#3U3 = 0 .  [3] 

In the equations p is the microscopic material density; ~, the volume fraction; and u, the 
velocity. 

Momentum conservation is described by 

Opl~u~ 
St 

-{- V "(Dl0[~ll;n~)~- -o~;Vp -{-plo~'l~ -t-Ki2(lba-lJ~)-J-K13(IJ3--1~)-l-PiVl, [4] 

~#2ff~82 + V " (p20c2u2u2) --  -o~2Vp "l-p20~g "f" KI2(B~ - -  g2) -I- K23(11'3 - il2) + p2 V2, ~5] 
at 

and 

Opi~z~3 
Ot 

+ V"  (p~3u3u3) ffi - ~3Vp + P~3g + K~3(u; - u3) + K,,(m2 - u3) + p~ V3. [6] 

The pressure p is assumed to be locally the same for all three phases; f is the acceleration 
due to gravity. The quantifies Pl VI, P2 V2 and Pl/"3 represent the transport of momentum 
due to the viscosity of the respective fields. These terms can be written as the divergence 
of a tensor, p V ~- V"  Fv. The  inteffacial momentum exchange functions are Kn, Kn and 
K23, respectively, which may vary with the relative velocities, the volume fractions, and 
other relevant variables, so that our formulation is by no means limited to a linear model 
for the exchange of momentum. We have not however included the effects of  turbulence 
or the possibility for non-isotopic momentum exchange. 

To complete the three-field set we write 

o~ + o ~ + ~ 3  = I .  [7] 

R E L A T I O N S H I P S  B E T W E E N  F I E L D S  
The two-field set of equations is obtained by recognizing that 

~ -- ~; + ~3, [8] 

and 

• t oqml = oqut + oqu3. [9] 

The second equation states that the total momentum of the liquid phase is the sum of the 
two separate momenta, contained in the bulk and entrapped fields. Our primary 
assumption is that Ks is very large so that we may approximate the dynamics of field 3 



VmTUAL MASS IN m J L ~  FLOW 693 

by writing 

u3 = u2. [10] 

In addition, we utilize a factor f analogous to C~. such that 

~3 ~--ftx2 • [111 

In generalfis a function of such flow properties as bubble shape and relative velocity, but 
for this derivation we have assumed f is a constant. These equations can be combined to 
show that 

OC~.~ = ~ I B I - - f ~ 2 8 2 ,  [121 

and 

al - a x  - fa2. [13] 

T W O - P H A S E  R E P R E S E N T A T I O N  

Using[10]-[13], we reduce the three-field mass equations to 

Ot + F" ~lul = O,  [14] 

and 

O--'t- 4- V "o~u2 = O. [15] 

Likewise the momentum equations can be arranged in such a way as to eliminate the 
field 3 and prime variables. Add[5] and [6], substitute for the prime variables and multiply 
by P2/(P2 +fPO to obtain 

[Do~2 ] (1 + f )  p#t(Kn + Kn) 
P" - V i -  + v . ~ 2  -- - p , ~  ¢~ ~--~,) Vp ÷ 0,2 + fpO(~, -#~) ('' - ~ 

P2 
+ p 2 ~  -4 ~2 "m J=%" (p2V2 +_ p, v3). [16] 

The functional form of the V3 term does not influence the derivation below and need not 
be specified at this stage of the development. Substituting for the prime variables in[4], 
we have 

ap1(o~lul -- f o ~ )  
Ot 

+V"  (~i P_~If~l(oq.1--fo~)(Oqm I --fiz'Ph) 

ffi - -  (~ l  - f % ) F p  4 ~ ~g2 - -  " I )  + i01(~1 - - f ~  + Pl  VI. [17] 

Equation[16] enables the elimination of the term Oo~JTJOt from[17]. Add and subtract 
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PtV "atutut from the result and rearrange to obtain 

['Oohu] . 1 PlL-- ~ -  + V" ~lmlsl = 
-I" f p  I "~ p2(~l --for2) Vp 

(p~ + fp,)  

p20t~(K!2 + Kls) 
(~  - ~2) + P ~ g  + Pt V~ 

(P2 + f p,)( a, -ill2) 

• OtlO~2 
0,2 + fp,) (o~ v~ + p, vo-fp, v ~ ( ~ -  . , ) ( ~ - . 1 ) .  

[18] 

At this stage of  the derivation the effects of  virtual mass are principally manifested in 
the coefficients of  the pressure gradients and in the last term of[18]. For many purposes 
it is more convenient to rewrite the equations in a manner that removes the virtual mass 
effects from the coefficients of  the pressure gradient terms and that isolates them in a way 
that allows direct comparison with previous formulations. To a~complish this rear- 
rangement multiply [ 18] by p2a2, [ 16] by p~a~, subtract to eliminate the gravitational terms, 
and rearrange. The result is 

O = - V p - t  PI(P~ + fPl) [Ootl~ o~10¢,~2 x 
- -  + V" ~ ' h  - ~ V" ~ ~ 

/ 

=I(PI=t + p~)(K,2 + KI~). 
+ ~(Pl - p~)(=, _f=~)2' t s ~ -  

p,(p~ + fpO 
(pl - p ~  - fot~ 

r~ 

P' p2) (p2 v2 + plv,) 

fp,(P2+f9~) ( ~ , ~ 2 ) ~ (  + V" (~2- 1) ~2 - ml). [19] 
(Pl - p2)(al -fccz) 

Multiply[19] by - f ~ ( P t  -- P~)/(P2 +fPl)  and add the result to[18] 

rO~tul 7 
pIE-- ~ -  

+ v. -  ,Vp 
_! 

• 12(£12 + Kl~) P~l 
(a I _fob.) 2 (. ,  -- u2) + Pl~g 4 (~,-~f--~ V1 

fp,~ fp,~, V 
" \~ l - f~2J  ( ~ z - a l X ~ - a l )  (al--f¢'2) (~1 - f ~  

x ~  0t ~ 0--~ + g ' a ' m l m l -  V ' ~  . [20] 

The two-field mass equations,[14] and [15], are used to remove the time derivatives of  
volume fraction from the last ~ of[20]. The equation expres~ag momentum conser- 
vation for field 1 then becomes 

I-a~'' 1 fP'"'~/&e a_,,'~= ,,?(K,~+K,,),_ ,,, at/ - ,Vp4 ,, 

+ ploqg "1 Pl°tl I,, 1 _ fPtal V • a t ~  
(a,--~-f-~ (o~:--fob.) ( a ~ - f ~ )  ( ' - ' ' X ' - ' ' )  

fP-'~'~ ( l "  
4(il_--'T~ i v ~ - u l " v u J .  [21] 
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The equation for field 2 is obtained by a similar series of steps. Equation[19] is 
multiplied by fo~2(Dl--P2)/(p2+fPl) and the result is added is added to[16]. After 
rearranging, the expression is 

(~ -f~) \ at 

fPio~ 
+ P2°~g (~l_fo~-------- ~ VI+P2F2+PtY3 Jc 

fPl~lo~ ( u 2 .  Vu2  - u l  • V u l ) .  

(~, - f ~  

~ ~ + ~,2(K,2 + K,3) 
ot ) - ~vp (a, - u~ = (a, - - f ~  

f2plO~Z 
(oq - fo~2) \ t - / q /  

[223 

Alternately the last term on the right of[22] can be combined with the time derivative on 
the left to give 

' 

in which the total derivatives (the Lagrangian time derivatives) describe the rate of change 
along the motion of each individual field. A similar alternative exists for[21]. 

DISCUSSION 
We sum[21] and [22] and integrate them over an Eulerian control volume to obtain 

~--~ I (Pltgligl "~ P2062"2) d'~ -t- ~ 1~ " (PlOCligl'l "~" P2ff~$2) dQ -~- ~R " ( ~ ) p  ~ 

• ~ )  , .1)(~ . , )da  I(Pt°t' + p,ot~ d~. [23] 

In [23] dz is an element of the control volume; da is an element of the surface area enclosing 
the volume; and d is a unit vector that is normal to the surface. The equation is of the 
form 

d f (Total Momentum) + d .  F da ffi (sources) dz, [24] 

where F represents the flux of momentum through the surface, showing that the virtual 
mass terms are internally conservative of momentum. 

Under most circumstances the validity of the virtual mass concept for bubbles implies 
that f ~  is small compared to at, so that the otherwise vanishing denominators in our 
equations are of no concern. 

This formulation has been incorporated in a two-dimensional computer code developed 
by Cook & Harlow (1983) to study the inception and evolution of bubbly yon Karman vortex 
streets in two-phase flow, Cook & Harlow (to be submitted), in which it is shown that 
excellent agreement with experiments is obtained with this formulation. 
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